Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
Evaluation of the energy efficiency of the embedded hardware associated with the AI functionality
Laboratoire National de Métrologie et d’Essais - LNE
Location
France
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

By having your AI or robotic system tested by LNE, you ensure it meets the highest standards of safety and performance, boosting your product’s reliability and trustworthiness in the market. Partnering with LNE for rigorous testing of your robotic and AI technologies gives you a competitive edge and trusted third-party assessment that enhances your product credibility and opens doors to new market opportunities both locally and globally. This service provides testing of devices with AI-integrated control systems, focusing on energy efficiency and consumption during the product life cycle. By simulating a wide range of scenarios, we provide detailed insights into the energy performance of these AI systems with regard to their expected operational environment. These tests can be conducted under different conditions, either in a completely simulated way, through a hybrid test bench where the actual physical device is assessed within a simulated environment, or using physical infrastructures based on the device's operational environment to test it in a 'real' setting. Tests are conducted under controlled laboratory conditions, ensuring optimal reproducibility and repeatability, providing reliable insights into the system's efficiency and safety-critical functionalities. Typical assessments may cover the energy efficiency of SLAM, various types of end effectors, and other relevant components such as sensors, motors or AI software. This rigorous testing process helps identify potential areas for improvement, enabling companies to enhance the efficiency and sustainability of their products, ultimately leading to cost savings and reduced environmental impact.

Performance evaluation
Test design
Test execution
Test setup
Provision of general-purpose datasets via multisensory ground robot
National Institute for Research in Digital Science and Technology  - INRIA
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for monitoring these changes effectively. This real-time data collection, often facilitated by ground robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets via a multisensory aerial robot.
National Institute for Research in Digital Science and Technology  - INRIA
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

We provide general-purpose datasets that can be used by customers to evaluate mobility algorithms and to develop and assess general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, and SLAM (Simultaneous Localisation and Mapping). Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks including, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas such as arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support customers in the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets with user-specified sensor(s)
National Institute for Research in Digital Science and Technology  - INRIA
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this includes classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and supporting decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial and/or ground robots equipped with user-specified sensors, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets