Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
Conformity assessment and compliance tests
Lukasiewicz Poznanski Instytut Technologiczny
Location
At user's premises
Poland
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

As part of this service, we test and measure, among other things, mechanical, physical, acoustic, radio, electromagnetic compatibility and electrical parameters for the purpose of assessing the overall user safety of agricultural, horticultural, forestry and food machinery, equipment and components. Verification is based on the requirements of standards and directives declared by the manufacturer. We carry out an initial assessment based on the design documentation provided or/and on measurements taken on a prototype based on harmonised and non-harmonised standards with relevant EU and sectoral legislation. This is to ensure that for instance essential requirements coming from for instance New Legislative Framework directives and other EU law are fulfilled to better protect both consumers and professionals from unsafe products to be placed on the European internal market. One of the aims is to help manufacturers in legal placing agrifood products on EU single market and in CE-marking process. The results obtained can be used in the further process of product labelling, declaration of conformity to affix the CE mark to the device within the scope of EMC, LVD, RED, MD, MR on other NLF directives and regulations.

Certification
Conformity assessment
Cybersecurity
Data analysis
ELSA assessment
LCA assessment
Performance evaluation
Test design
Test execution
Test setup
Provision of general-purpose datasets via multisensory ground robot
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for monitoring these changes effectively. This real-time data collection, often facilitated by ground robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets via a multisensory aerial robot.
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

We provide general-purpose datasets that can be used by customers to evaluate mobility algorithms and to develop and assess general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, and SLAM (Simultaneous Localisation and Mapping). Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks including, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas such as arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support customers in the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets with user-specified sensor(s)
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this includes classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and supporting decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial and/or ground robots equipped with user-specified sensors, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Testing and evaluation of mobility algorithms with ground robots
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

The SOPHIA infrastructure provides the ability to test and evaluate mobility algorithms embedded on a ground robot. Mobility algorithms concern the classical robotics functionalities of mapping, localisation, SLAM, and navigation. The ground robot is equipped with an array of sensors, including a camera, LiDAR, IMU, and RTK-GPS for ground truth evaluation. The service proceeds in three stages. Firstly, we evaluate the algorithm using representative datasets. After that, the algorithm is integrated into a ROS2 architecture and evaluated with the local agrifoodTEF test infrastructure (various areas are possible). The performance of different attributes of the algorithm is assessed using quantitative and qualitative metrics. Benchmarking could be proposed as a complementary option to position the performance of the proposed algorithm in relation to the current state of the art. The final step involves field testing under real conditions at a specific end-user or customer site using the mobile living lab, which consists of a mobile laboratory deployed in the field and connected to the real robot for monitoring and evaluation purposes.

Collection of test data
Data analysis
Desk assessment
Performance evaluation
Test design
Test execution
Test setup
Testing and evaluation of mobility algorithms with aerial robots
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

The SOPHIA infrastructure will offer the possibility to test and evaluate the mobility algorithms embedded on an aerial robot. Mobility algorithms concern the classical robotics functionalities of mapping, localisation, SLAM, and navigation. The aerial robot is equipped with an array of sensors, including a camera, LiDAR, IMU, and RTK-GPS (for ground truth evaluation). The service consists of three main steps. To begin with, the algorithm is evaluated using representative datasets. After that, the algorithm is integrated into a ROS2 architecture and evaluated with the local agrifoodTEF test infrastructure (various areas are possible). The performance of different attributes of the algorithm is evaluated using quantitative and qualitative metrics. Benchmarking could be proposed as a complementary option to position the performance of the proposed algorithm in relation to the current state of the art. The final step involves field testing under real conditions at a specific end-user or customer site using the mobile living lab (which consists of a mobile laboratory deployed in the field and connected to the real robot for monitoring and evaluation purposes).

Collection of test data
Data analysis
Desk assessment
Test design
Test execution
Test setup