Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
Assessment of interoperability for AI-driven solutions
Wageningen University WUR
Location
At user's premises
Netherlands
Remote
Arable farming
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

Data interoperability in the agrifood sector hinders innovation and development due to the need for many custom solutions to share data. This service helps agricultural organisations improve how they handle and share data across the entire food value chain. By implementing standardised reference data models like rmAgro (https://rmagro.org), we help to optimise your data flows and make your information systems work better together. Our team at Wageningen Research provides expert guidance in data modelling and implements reference models that align with industry standards and tests the reference models against various use cases. This promotes more efficient data sharing between different systems and organisations, reducing data integration challenges and improving operational efficiency. The service is particularly valuable for organisations looking to modernise their data infrastructure or needing to share data more effectively with partners in the agri-food sector. This service provides an assessment of interoperability for AI-driven solutions within the agri-food sector. The service facilitates conformance testing and verification of whether the related IT systems comply with relevant standards, guidelines, data space regulations, and other interoperability requirements. By evaluating the IT systems against established reference data models and frameworks like rmAgro (https://rmagro.org), the service ensures that it meets the necessary criteria for effective data sharing and integration. Wageningen Research leverages its expertise to evaluate the overall AI solution on its quality, performance, and how well it aligns with industry standards, offering insights and recommendations for improvement. This service supports organisations in ensuring their solutions are interoperable, compliant, and ready for seamless integration within the agri-food value chain.

Conformity assessment
Data augmentation
Test design
Test execution
Test setup
Evaluation of AI performance based on mixed testing environments
Laboratoire National de Meterologie et d'Essais (LNE)
Location
France
Remote
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

By having your AI system tested by the LNE, you ensure it meets the highest standards of safety and performance, boosting your product’s reliability and trustworthiness in the market. Partnering with the LNE for rigorous testing of your AI technologies and a detailed evaluation report used for demonstrating performance enhances credibility and opens doors to new market opportunities both locally and globally. This service proposes to assess a range of agricultural devices (with respect to the physical constraints of the testing bench) integrating AI, particularly those utilising vision processing, within our advanced hybrid testing environment. Our novel hybrid testing facility consists of placing devices in the heart of a simulation projected onto a 300° screen while a motion capture system and instrumented conveyor belt measure its movements, if any. These data are continuously sent to the simulator in real time so that the device's digital twin follows the same movements and the projected environment is updated accordingly. The simulator also incorporates a physics engine and advanced sensor models, enabling a virtual sensor output to be substituted for the sensors in real time in the cases where devices require specific data and/or if the assessment is orientated toward a special kind of sensor degradation. Typical agricultural products evaluated include mobile robots for autonomous weeding or harvesting that use visual navigation (based on 2D cameras) and intelligent cameras (with AI functionalities) for crop health monitoring or livestock tracking. Other sensors commonly used in agriculture, such as 3D cameras for yield estimation, GPS for autonomous vehicle control, Lidar for terrain mapping, and sonar for obstacle detection, are also supported through data injection from the simulator.

Performance evaluation
Test design
Test execution
Test setup
Evaluation of the energy efficiency of the embedded hardware associated with the AI functionality
Laboratoire National de Meterologie et d'Essais (LNE)
Location
France
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

By having your AI or robotic system tested by LNE, you ensure it meets the highest standards of safety and performance, boosting your product’s reliability and trustworthiness in the market. Partnering with LNE for rigorous testing of your robotic and AI technologies gives you a competitive edge and trusted third-party assessment that enhances your product credibility and opens doors to new market opportunities both locally and globally. This service provides testing of devices with AI-integrated control systems, focusing on energy efficiency and consumption during the product life cycle. By simulating a wide range of scenarios, we provide detailed insights into the energy performance of these AI systems with regard to their expected operational environment. These tests can be conducted under different conditions, either in a completely simulated way, through a hybrid test bench where the actual physical device is assessed within a simulated environment, or using physical infrastructures based on the device's operational environment to test it in a 'real' setting. Tests are conducted under controlled laboratory conditions, ensuring optimal reproducibility and repeatability, providing reliable insights into the system's efficiency and safety-critical functionalities. Typical assessments may cover the energy efficiency of SLAM, various types of end effectors, and other relevant components such as sensors, motors or AI software. This rigorous testing process helps identify potential areas for improvement, enabling companies to enhance the efficiency and sustainability of their products, ultimately leading to cost savings and reduced environmental impact.

Performance evaluation
Test design
Test execution
Test setup