Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
Certification of Artificial Intelligence Management System (AIMS) of ISO/IEC 42001
Laboratoire National de Meterologie et d'Essais (LNE)
Location
At user's premises
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

The ISO/IEC 42001 is a global standard that provides a robust framework and structure within which AI systems can be developed, deployed and used responsibly. It sets out requirements and recommendations for establishing, implementing, maintaining and continuously improving an AI management system within the context of an organisation. Key controls included in the standard are risk management, AI impact assessment, system lifecycle management, performance optimisation, and supplier management. Its aim is to help organisations: Develop or use AI responsibly, Meet applicable regulatory requirements, and * Meet stakeholders' obligations and expectations. In this way, it provides concrete support to companies in optimising the use of AI by guaranteeing a level of control and confidence in the systems developed. Customers concerned: consulting firms; solution or application developers; integrators; companies integrating AI solutions purchased on the market or developed in-house into your offerings; competent authorities (decision-makers, regulators). Webinar: https://www.lne.fr/fr/webinars/iso-42001-certification-ia-lne-s Technical documentation (FR): https://www.lne.fr/sites/default/files/bloc-telecharger/FTC-ISO-42001-LNE.pdf

Certification
Conformity assessment
Desk assessment
LCA assessment
Collection of test data during digital testing
Politecnico di Milano (POLIMI)
Università degli Studi di Milano (UMIL)
Location
Italy
Remote
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

One of the key activities during digital testing is the collection of data concerning the progression and the final outcome of the tests. Such data enable the evaluation of system performance by the customer or – if needed – by agrifoodTEF (via Service S00184). This service manages the collection of data relevant to performance evaluation produced during the tests by both the system under test and the computational environment where the tests take place.

Examples of collected data comprise information produced within a virtual environment to simulate sensor data collection in a physical environment; statistics about AI model performance in the test and deployment phase (e.g., occupied memory, number of trainable parameters, training/optimisation loss, etc.); specific labels and annotations to use as ground truth for evaluating the system; and system output when subjected to a range of test conditions.  

The minimum set of data to be collected is defined by the evaluation metrics that the user chose (either on their own or with agrifoodTEF support, via Service S00178) to process them; generally, a larger set of data wrt the minimum is selected by agrifoodTEF together with the customer to provide a richer view of the system’s performance and to enable the application of other metrics in the future, if needed.

As an output of the service, in addition to the raw data, we also provide the customer with documentation describing logged features and conditions of the testing environment at the time of testing, as well as any parameter values, variation ranges and specifics required for reproducibility purposes.

Collection of test data
Conformity assessment and compliance tests
Lukasiewicz Poznanski Instytut Technologiczny (L-PIT)
Location
At user's premises
Poland
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

As part of this service, we test and measure, among other things, mechanical, physical, acoustic, radio, electromagnetic compatibility and electrical parameters for the purpose of assessing the overall user safety of agricultural, horticultural, forestry and food machinery, equipment and components. Verification is based on the requirements of standards and directives declared by the manufacturer. We carry out an initial assessment based on the design documentation provided or/and on measurements taken on a prototype based on harmonised and non-harmonised standards with relevant EU and sectoral legislation. This is to ensure that for instance essential requirements coming from for instance New Legislative Framework directives and other EU law are fulfilled to better protect both consumers and professionals from unsafe products to be placed on the European internal market. One of the aims is to help manufacturers in legal placing agrifood products on EU single market and in CE-marking process. The results obtained can be used in the further process of product labelling, declaration of conformity to affix the CE mark to the device within the scope of EMC, LVD, RED, MD, MR on other NLF directives and regulations.

Certification
Conformity assessment
Cybersecurity
Data analysis
ELSA assessment
LCA assessment
Performance evaluation
Test design
Test execution
Test setup
Data analysis and quality evaluation for agricultural equipment and AI algorithms
University of Cordoba (UCO)
Location
Remote
Spain
Arable farming
Horticulture
Tree Crops
Viticulture

This service provides independent evaluation of agricultural datasets to determine their suitability for use in the testing, development, or validation of AI- and robotics-based systems. The focus is on verifying the quality, structure, and statistical consistency of the data to ensure it meets the requirements for use in intelligent technologies operating in agricultural environments. Our evaluation process includes the application of descriptive statistical techniques to assess data completeness, identify anomalies, and quantify variability across key parameters such as crop yields, irrigation records, and fertilisation schedules. We assess measures of central tendency, dispersion, and distribution to evaluate the stability and reliability of the datasets. This helps identify issues like missing values, outliers, or inconsistencies that could compromise the performance or fairness of automated systems trained or tested on this data. By systematically evaluating data integrity and structure, we help researchers, developers, and integrators ensure their AI algorithms or robotic platforms are tested with datasets that reflect real-world conditions. This contributes to more effective experimentation, better system generalisation, and ultimately, more trustworthy agricultural technologies.

Collection of test data
Performance evaluation
Test design