Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
  • 17 results found
Benchmarking & Testing Suite for Edge Hardware Systems
Lukasiewicz Poznanski Instytut Technologiczny
Poznan Supercomputing and Networking Center (PSNC)
Location
Poland
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

The Benchmarking & Testing Suite for Edge Hardware Systems delivers a set of tests designed to evaluate the performance, reliability, and functionality of edge hardware and its components under various operational conditions. 

The tests can be compared to specific industry standards or the performance of other solutions available on the market. Examples of tests offered as part of the service: 

- Environmental tests: Assessing devices' resistance to extreme conditions, such as temperature, humidity, and vibrations. 

- Signal tests: Evaluating devices using GNSS signal generators, testing their resilience to interference or false signals. 

- Network tests: Evaluate device performance within a prototype 5G network infrastructure.

 - Functional tests: Assessing the capability of devices, such as remote PTZ (pan, tilt, zoom) cameras, to perform operational tasks in field conditions. 

- Integration tests: Examining the cooperation of edge devices with sensors, AI systems, and their responses to data input failures. - Accuracy tests: Measuring the precision of sensors and control systems. Test results can be compared to specified standards or the performance of competitive solutions, enabling customers to better understand their devices' capabilities.

Collection of test data
Desk assessment
Performance evaluation
Test design
Test execution
Test setup
Provision of general-purpose datasets with user-specified sensor(s)
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this includes classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and supporting decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial and/or ground robots equipped with user-specified sensors, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets via multisensory ground robot
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

General-purpose datasets serve two primary objectives: (i) evaluating mobility algorithms and (ii) developing and assessing general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, SLAM (Simultaneous Localisation and Mapping), and navigation. Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks such as, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas like arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for monitoring these changes effectively. This real-time data collection, often facilitated by ground robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets
Provision of general-purpose datasets via a multisensory aerial robot.
National Institute for Research in Digital Science and Technology  (INRIA)
Location
At user's premises
France
Arable farming
Food processing
Greenhouse
Horticulture
Tree Crops
Viticulture

We provide general-purpose datasets that can be used by customers to evaluate mobility algorithms and to develop and assess general-purpose AI applications. In the context of mobility algorithms, this pertains to classical robotics tasks such as mapping, localisation, and SLAM (Simultaneous Localisation and Mapping). Meanwhile, general-purpose AI applications focus on advancing algorithms and feeding decision support systems (DSS) for tasks including, but not limited to, weed detection, health monitoring, growth and maturity assessment, and yield estimation in areas such as arable farming, horticulture, food processing, forestry, and tree management. A significant challenge in developing AI solutions for agricultural robotics lies in the dynamic nature of agricultural environments, which fluctuate with different seasons and weather conditions. To address this, acquiring consistent and periodic data is essential for effectively monitoring these changes. This real-time data collection, often facilitated by aerial robots, is crucial for developing efficient algorithms and AI solutions. Such datasets can support customers in the development of sensor-specific techniques or be leveraged to create multisensory algorithms, enabling more accurate and adaptable systems for agricultural applications.

Data analysis
Data augmentation
Desk assessment
Provision of datasets