Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
  • 43 results found
Calibration and Optimisation of Technological Quality Measurement Methods for Cereal Grain
ARVALIS
Location
France
Arable farming

Our service provides access to grain samples and comprehensive technological quality analysis conducted at Arvalis facilities, enabling the development of AI-powered grain analysis solutions. Clients can work with well-documented samples from one or multiple species, enriched with detailed metadata such as variety, harvest year, and collection location crucial for training and validating AI models. Beyond sample selection and preparation, our experts assist in choosing, testing, and validating analytical methods, covering rheological properties (Alvéolab), breadmaking tests, and protein content measurement (Infratec, Dumas). These high-quality datasets, combined with access to Arvalis facilities and controlled testing environments, provide an ideal foundation for developing machine learning algorithms that enhance grain quality prediction, automate classification, and optimise processing parameters. With our service, clients can accelerate the development, validation, and deployment of AI-driven grain analysis tools, ensuring they meet industry standards and deliver precise, reproducible results. Our expertise in analytical methods allows customers to refine their models, improve prediction accuracy, and scale AI solutions for real-world agricultural applications.

Collection of test data
Desk assessment
Performance evaluation
Provision of datasets
Test design
Test execution
Test setup
Data analysis and quality evaluation for agricultural equipment and AI algorithms
University of Cordoba (UCO)
Location
Remote
Spain
Arable farming
Horticulture
Tree Crops
Viticulture

This service provides independent evaluation of agricultural datasets to determine their suitability for use in the testing, development, or validation of AI- and robotics-based systems. The focus is on verifying the quality, structure, and statistical consistency of the data to ensure it meets the requirements for use in intelligent technologies operating in agricultural environments. Our evaluation process includes the application of descriptive statistical techniques to assess data completeness, identify anomalies, and quantify variability across key parameters such as crop yields, irrigation records, and fertilisation schedules. We assess measures of central tendency, dispersion, and distribution to evaluate the stability and reliability of the datasets. This helps identify issues like missing values, outliers, or inconsistencies that could compromise the performance or fairness of automated systems trained or tested on this data. By systematically evaluating data integrity and structure, we help researchers, developers, and integrators ensure their AI algorithms or robotic platforms are tested with datasets that reflect real-world conditions. This contributes to more effective experimentation, better system generalisation, and ultimately, more trustworthy agricultural technologies.

Collection of test data
Performance evaluation
Test design
Design of test environments for physical testing
Politecnico di Milano (POLIMI)
Università degli Studi di Milano (UMIL)
University of Cordoba (UCO)
Location
Italy
Remote
Spain
Arable farming
Greenhouse
Horticulture
Tree Crops
Viticulture

Any physical test activity involves three main components: environment (where the tests take place), protocol (defining what tests are executed and how) and evaluation metrics (used to assess the results of the tests). This service concerns the first element, i.e., the design of a physical testing environment for use cases such as (for instance) weeding, plant phenotyping, and precision spraying solutions. The protocol and the evaluation metrics can -if required- be designed via services S00107 and S00108.

Depending on your requirements and reference system/solution to be tested, our team will design an ad hoc setup equipped with all the required features for testing. Environmental features include, for example:

  • the crop and weed species to be prepared and their growth stage,
  • the plant layout and intra-row configuration,
  • seasonal weather and climate-related conditions (e.g., lighting conditions, wind, rain), 
  • the type of soil, moisture level, and terrain conditions (e.g., uneven terrain, presence of any slopes, and so forth),
  • the technical infrastructure supporting the tests (e.g., electrical layout, network infrastructure, environmental sensors, data acquisition systems…).

In order to consider all aspects of the environment, this service involves a team comprising both engineers and agronomists.

Test design