Catalogue of Services

Are you looking for a service to validate, test or evaluate your agrifood product? 
Explore our Catalogue to find the perfect service tailored to your needs! 

Need help to choose a service?

Contact us

AGRIFood Catalogue services
  • 32 results found
Calibration and Optimisation of Technological Quality Measurement Methods for Cereal Grain
ARVALIS
Location
France
Arable farming

Our service provides access to grain samples and comprehensive technological quality analysis conducted at Arvalis facilities, enabling the development of AI-powered grain analysis solutions. Clients can work with well-documented samples from one or multiple species, enriched with detailed metadata such as variety, harvest year, and collection location crucial for training and validating AI models. Beyond sample selection and preparation, our experts assist in choosing, testing, and validating analytical methods, covering rheological properties (Alvéolab), breadmaking tests, and protein content measurement (Infratec, Dumas). These high-quality datasets, combined with access to Arvalis facilities and controlled testing environments, provide an ideal foundation for developing machine learning algorithms that enhance grain quality prediction, automate classification, and optimise processing parameters. With our service, clients can accelerate the development, validation, and deployment of AI-driven grain analysis tools, ensuring they meet industry standards and deliver precise, reproducible results. Our expertise in analytical methods allows customers to refine their models, improve prediction accuracy, and scale AI solutions for real-world agricultural applications.

Collection of test data
Desk assessment
Performance evaluation
Provision of datasets
Test design
Test execution
Test setup
Certification of Artificial Intelligence Management System (AIMS) of ISO/IEC 42001
Laboratoire National de Meterologie et d'Essais (LNE)
Location
At user's premises
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

The ISO/IEC 42001 is a global standard that provides a robust framework and structure within which AI systems can be developed, deployed and used responsibly. It sets out requirements and recommendations for establishing, implementing, maintaining and continuously improving an AI management system within the context of an organisation. Key controls included in the standard are risk management, AI impact assessment, system lifecycle management, performance optimisation, and supplier management. Its aim is to help organisations: Develop or use AI responsibly, Meet applicable regulatory requirements, and * Meet stakeholders' obligations and expectations. In this way, it provides concrete support to companies in optimising the use of AI by guaranteeing a level of control and confidence in the systems developed. Customers concerned: consulting firms; solution or application developers; integrators; companies integrating AI solutions purchased on the market or developed in-house into your offerings; competent authorities (decision-makers, regulators). Webinar: https://www.lne.fr/fr/webinars/iso-42001-certification-ia-lne-s Technical documentation (FR): https://www.lne.fr/sites/default/files/bloc-telecharger/FTC-ISO-42001-LNE.pdf

Certification
Conformity assessment
Desk assessment
LCA assessment
Evaluation of AI performance based on mixed testing environments
Laboratoire National de Meterologie et d'Essais (LNE)
Location
France
Remote
Arable farming
Food processing
Greenhouse
Horticulture
Livestock farming
Tree Crops
Viticulture

By having your AI system tested by the LNE, you ensure it meets the highest standards of safety and performance, boosting your product’s reliability and trustworthiness in the market. Partnering with the LNE for rigorous testing of your AI technologies and a detailed evaluation report used for demonstrating performance enhances credibility and opens doors to new market opportunities both locally and globally. This service proposes to assess a range of agricultural devices (with respect to the physical constraints of the testing bench) integrating AI, particularly those utilising vision processing, within our advanced hybrid testing environment. Our novel hybrid testing facility consists of placing devices in the heart of a simulation projected onto a 300° screen while a motion capture system and instrumented conveyor belt measure its movements, if any. These data are continuously sent to the simulator in real time so that the device's digital twin follows the same movements and the projected environment is updated accordingly. The simulator also incorporates a physics engine and advanced sensor models, enabling a virtual sensor output to be substituted for the sensors in real time in the cases where devices require specific data and/or if the assessment is orientated toward a special kind of sensor degradation. Typical agricultural products evaluated include mobile robots for autonomous weeding or harvesting that use visual navigation (based on 2D cameras) and intelligent cameras (with AI functionalities) for crop health monitoring or livestock tracking. Other sensors commonly used in agriculture, such as 3D cameras for yield estimation, GPS for autonomous vehicle control, Lidar for terrain mapping, and sonar for obstacle detection, are also supported through data injection from the simulator.

Performance evaluation
Test design
Test execution
Test setup